Query-Efficient Hard-label Black-box Attack:An Optimization-based Approach

07/12/2018
by   Minhao Cheng, et al.
8

We study the problem of attacking a machine learning model in the hard-label black-box setting, where no model information is revealed except that the attacker can make queries to probe the corresponding hard-label decisions. This is a very challenging problem since the direct extension of state-of-the-art white-box attacks (e.g., CW or PGD) to the hard-label black-box setting will require minimizing a non-continuous step function, which is combinatorial and cannot be solved by a gradient-based optimizer. The only current approach is based on random walk on the boundary, which requires lots of queries and lacks convergence guarantees. We propose a novel way to formulate the hard-label black-box attack as a real-valued optimization problem which is usually continuous and can be solved by any zeroth order optimization algorithm. For example, using the Randomized Gradient-Free method, we are able to bound the number of iterations needed for our algorithm to achieve stationary points. We demonstrate that our proposed method outperforms the previous random walk approach to attacking convolutional neural networks on MNIST, CIFAR, and ImageNet datasets. More interestingly, we show that the proposed algorithm can also be used to attack other discrete and non-continuous machine learning models, such as Gradient Boosting Decision Trees (GBDT).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset