Randomness Concerns When Deploying Differential Privacy

09/06/2020
by   Simson L. Garfinkel, et al.
0

The U.S. Census Bureau is using differential privacy (DP) to protect confidential respondent data collected for the 2020 Decennial Census of Population Housing. The Census Bureau's DP system is implemented in the Disclosure Avoidance System (DAS) and requires a source of random numbers. We estimate that the 2020 Census will require roughly 90TB of random bytes to protect the person and household tables. Although there are critical differences between cryptography and DP, they have similar requirements for randomness. We review the history of random number generation on deterministic computers, including von Neumann's "middle-square" method, Mersenne Twister (MT19937) (previously the default NumPy random number generator, which we conclude is unacceptable for use in production privacy-preserving systems), and the Linux /dev/urandom device. We also review hardware random number generator schemes, including the use of so-called "Lava Lamps" and the Intel Secure Key RDRAND instruction. We finally present our plan for generating random bits in the Amazon Web Services (AWS) environment using AES-CTR-DRBG seeded by mixing bits from /dev/urandom and the Intel Secure Key RDSEED instruction, a compromise of our desire to rely on a trusted hardware implementation, the unease of our external reviewers in trusting a hardware-only implementation, and the need to generate so many random bits.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset