Rational approximation of the absolute value function from measurements: a numerical study of recent methods

05/06/2020
by   Ion Victor Gosea, et al.
0

In this work, we propose an extensive numerical study on approximating the absolute value function. The methods presented in this paper compute approximants in the form of rational functions and have been proposed relatively recently, e.g., the Loewner framework and the AAA algorithm. Moreover, these methods are based on data, i.e., measurements of the original function (hence data-driven nature). We compare numerical results for these two methods with those of a recently-proposed best rational approximation method (the minimax algorithm) and with various classical bounds from the previous century. Finally, we propose an iterative extension of the Loewner framework that can be used to increase the approximation quality of the rational approximant.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset