Re-parameterizing Your Optimizers rather than Architectures

05/30/2022
by   Xiaohan Ding, et al.
7

The well-designed structures in neural networks reflect the prior knowledge incorporated into the models. However, though different models have various priors, we are used to training them with model-agnostic optimizers (e.g., SGD). In this paper, we propose a novel paradigm of incorporating model-specific prior knowledge into optimizers and using them to train generic (simple) models. As an implementation, we propose a novel methodology to add prior knowledge by modifying the gradients according to a set of model-specific hyper-parameters, which is referred to as Gradient Re-parameterization, and the optimizers are named RepOptimizers. For the extreme simplicity of model structure, we focus on a VGG-style plain model and showcase that such a simple model trained with a RepOptimizer, which is referred to as RepOpt-VGG, performs on par with the recent well-designed models. From a practical perspective, RepOpt-VGG is a favorable base model because of its simple structure, high inference speed and training efficiency. Compared to Structural Re-parameterization, which adds priors into models via constructing extra training-time structures, RepOptimizers require no extra forward/backward computations and solve the problem of quantization. The code and models are publicly available at https://github.com/DingXiaoH/RepOptimizers.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset