Real-Time Bidding with Multi-Agent Reinforcement Learning in Display Advertising

02/27/2018
by   Junqi Jin, et al.
0

Real-time advertising allows advertisers to bid for each impression for a visiting user. To optimize a specific goal such as maximizing the revenue led by ad placements, advertisers not only need to estimate the relevance between the ads and user's interests, but most importantly require a strategic response with respect to other advertisers bidding in the market. In this paper, we formulate bidding optimization with multi-agent reinforcement learning. To deal with a large number of advertisers, we propose a clustering method and assign each cluster with a strategic bidding agent. A practical Distributed Coordinated Multi-Agent Bidding (DCMAB) has been proposed and implemented to balance the tradeoff between the competition and cooperation among advertisers. The empirical study on our industry-scaled real-world data has demonstrated the effectiveness of our modeling methods. Our results show that a cluster based bidding would largely outperform single-agent and bandit approaches, and the coordinated bidding achieves better overall objectives than the purely self-interested bidding agents.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset