Real-time Fruit Recognition and Grasp Estimation for Autonomous Apple harvesting
In this research, a fully neural network based visual perception framework for autonomous apple harvesting is proposed. The proposed framework includes a multi-function neural network for fruit recognition and a Pointnet grasp estimation to determine the proper grasp pose to guide the robotic execution. Fruit recognition takes raw input of RGB images from the RGB-D camera to perform fruit detection and instance segmentation, and Pointnet grasp estimation take point cloud of each fruit as input and output the prediction of grasp pose for each of fruits. The proposed framework is validated by using RGB-D images collected from laboratory and orchard environments, a robotic grasping test in a controlled environment is also included in the experiments. Experimental shows that the proposed framework can accurately localise and estimate the grasp pose for robotic grasping.
READ FULL TEXT