Real-Time Pose Estimation for Event Cameras with Stacked Spatial LSTM Networks

08/22/2017
by   Anh Nguyen, et al.
0

We present a new method to estimate the 6DOF pose of the event camera solely based on the event stream. Our method first creates the event image from a list of events that occurs in a very short time interval, then a Stacked Spatial LSTM Network (SP-LSTM) is used to learn and estimate the camera pose. Our SP-LSTM comprises a CNN to learn deep features from the event images and a stack of LSTM to learn spatial dependencies in the image features space. We show that the spatial dependency plays an important role in the pose estimation task and the SP-LSTM can effectively learn that information. The experimental results on the public dataset show that our approach outperforms recent methods by a substantial margin. Overall, our proposed method reduces about 6 times the position error and 3 times the orientation error over the state of the art. The source code and trained models will be released.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset