Recognizing Emotion Cause in Conversations

12/22/2020
by   Soujanya Poria, et al.
13

Recognizing the cause behind emotions in text is a fundamental yet under-explored area of research in NLP. Advances in this area hold the potential to improve interpretability and performance in affect-based models. Identifying emotion causes at the utterance level in conversations is particularly challenging due to the intermingling dynamic among the interlocutors. To this end, we introduce the task of recognizing emotion cause in conversations with an accompanying dataset named RECCON. Furthermore, we define different cause types based on the source of the causes and establish strong transformer-based baselines to address two different sub-tasks of RECCON: 1) Causal Span Extraction and 2) Causal Emotion Entailment. The dataset is available at https://github.com/declare-lab/RECCON.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset