Rectilinear Planarity of Partial 2-Trees

08/26/2022
by   Walter Didimo, et al.
0

A graph is rectilinear planar if it admits a planar orthogonal drawing without bends. While testing rectilinear planarity is NP-hard in general, it is a long-standing open problem to establish a tight upper bound on its complexity for partial 2-trees, i.e., graphs whose biconnected components are series-parallel. We describe a new O(n^2 log^2 n)-time algorithm to test rectilinear planarity of partial 2-trees, which improves over the current best bound of O(n^3 log n). Moreover, for series-parallel graphs where no two parallel-components share a pole, we are able to achieve optimal O(n)-time complexity. Our algorithms are based on an extensive study and a deeper understanding of the notion of orthogonal spirality, introduced in 1998 to describe how much an orthogonal drawing of a subgraph is rolled-up in an orthogonal drawing of the graph.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro