Recursive deep learning framework for forecasting the decadal world economic outlook

01/25/2023
by   Tianyi Wang, et al.
5

Gross domestic product (GDP) is the most widely used indicator in macroeconomics and the main tool for measuring a country's economic ouput. Due to the diversity and complexity of the world economy, a wide range of models have been used, but there are challenges in making decadal GDP forecasts given unexpected changes such as pandemics and wars. Deep learning models are well suited for modeling temporal sequences have been applied for time series forecasting. In this paper, we develop a deep learning framework to forecast the GDP growth rate of the world economy over a decade. We use Penn World Table as the source of our data, taking data from 1980 to 2019, across 13 countries, such as Australia, China, India, the United States and so on. We test multiple deep learning models, LSTM, BD-LSTM, ED-LSTM and CNN, and compared their results with the traditional time series model (ARIMA,VAR). Our results indicate that ED-LSTM is the best performing model. We present a recursive deep learning framework to predict the GDP growth rate in the next ten years. We predict that most countries will experience economic growth slowdown, stagnation or even recession within five years; only China, France and India are predicted to experience stable, or increasing, GDP growth.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset