Redesigning pattern mining algorithms for supercomputers

10/27/2015
by   Kazuki Yoshizoe, et al.
0

Upcoming many core processors are expected to employ a distributed memory architecture similar to currently available supercomputers, but parallel pattern mining algorithms amenable to the architecture are not comprehensively studied. We present a novel closed pattern mining algorithm with a well-engineered communication protocol, and generalize it to find statistically significant patterns from personal genome data. For distributing communication evenly, it employs global load balancing with multiple stacks distributed on a set of cores organized as a hypercube with random edges. Our algorithm achieved up to 1175-fold speedup by using 1200 cores for solving a problem with 11,914 items and 697 transactions, while the naive approach of separating the search space failed completely.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset