Relational E-Matching

08/04/2021
by   Yihong Zhang, et al.
0

We present a new approach to e-matching based on relational join; in particular, we apply recent database query execution techniques to guarantee worst-case optimal run time. Compared to the conventional backtracking approach that always searches the e-graph "top down", our new relational e-matching approach can better exploit pattern structure by searching the e-graph according to an optimized query plan. We also establish the first data complexity result for e-matching, bounding run time as a function of the e-graph size and output size. We prototyped and evaluated our technique in the state-of-the-art egg e-graph framework. Compared to a conventional baseline, relational e-matching is simpler to implement and orders of magnitude faster in practice.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro