Remember What You have drawn: Semantic Image Manipulation with Memory

07/27/2021
by   Xiangxi Shi, et al.
7

Image manipulation with natural language, which aims to manipulate images with the guidance of language descriptions, has been a challenging problem in the fields of computer vision and natural language processing (NLP). Currently, a number of efforts have been made for this task, but their performances are still distant away from generating realistic and text-conformed manipulated images. Therefore, in this paper, we propose a memory-based Image Manipulation Network (MIM-Net), where a set of memories learned from images is introduced to synthesize the texture information with the guidance of the textual description. We propose a two-stage network with an additional reconstruction stage to learn the latent memories efficiently. To avoid the unnecessary background changes, we propose a Target Localization Unit (TLU) to focus on the manipulation of the region mentioned by the text. Moreover, to learn a robust memory, we further propose a novel randomized memory training loss. Experiments on the four popular datasets show the better performance of our method compared to the existing ones.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset