Representing three-dimensional cross fields using 4th order tensors

08/12/2018
by   Alexandre Chemin, et al.
0

This paper presents a new way of describing cross fields based on fourth order tensors. We prove that the new formulation is forming a linear space in R^9. The algebraic structure of the tensors and their projections on SO(3) are presented. The relationship of the new formulation with spherical harmonics is exposed. This paper is quite theoretical. Due to pages limitation, few practical aspects related to the computations of cross fields are exposed. Nevetheless, a global smoothing algorithm is briefly presented and computation of cross fields are finally depicted.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset