Reprogramming Pretrained Language Models for Protein Sequence Representation Learning
Machine Learning-guided solutions for protein learning tasks have made significant headway in recent years. However, success in scientific discovery tasks is limited by the accessibility of well-defined and labeled in-domain data. To tackle the low-data constraint, recent adaptions of deep learning models pretrained on millions of protein sequences have shown promise; however, the construction of such domain-specific large-scale model is computationally expensive. Here, we propose Representation Learning via Dictionary Learning (R2DL), an end-to-end representation learning framework in which we reprogram deep models for alternate-domain tasks that can perform well on protein property prediction with significantly fewer training samples. R2DL reprograms a pretrained English language model to learn the embeddings of protein sequences, by learning a sparse linear mapping between English and protein sequence vocabulary embeddings. Our model can attain better accuracy and significantly improve the data efficiency by up to 10^5 times over the baselines set by pretrained and standard supervised methods. To this end, we reprogram an off-the-shelf pre-trained English language transformer and benchmark it on a set of protein physicochemical prediction tasks (secondary structure, stability, homology, stability) as well as on a biomedically relevant set of protein function prediction tasks (antimicrobial, toxicity, antibody affinity).
READ FULL TEXT