Resource Allocation in One-dimensional Distributed Service Networks

01/08/2019
by   Nitish K. Panigrahy, et al.
0

We consider assignment policies that allocate resources to users, where both resources and users are located on a one-dimensional line. First, we consider unidirectional assignment policies that allocate resources only to users located to their left. We propose the Move to Right (MTR) policy, which scans from left to right assigning nearest rightmost available resource to a user, and contrast it to the Unidirectional Gale-Shapley (UGS) matching policy. While both these policies are optimal among all unidirectional policies, we show that they are equivalent with respect to the expected distance traveled by a request (request distance), although MTR is fairer. Moreover, we show that when user and resource locations are modeled by statistical point processes, and resources are allowed to satisfy more than one user, the spatial system under unidirectional policies can be mapped into bulk service queuing systems, thus allowing the application of a plethora of queuing theory results that yield closed form expressions. As we consider a case where different resources can satisfy different numbers of users, we also generate new results for bulk service queues. We also consider bidirectional policies where there are no directional restrictions on resource allocation and develop an algorithm for computing the optimal assignment which is more efficient than known algorithms in the literature when there are more resources than users. Finally, numerical evaluation of performance of unidirectional and bidirectional allocation schemes yields design guidelines beneficial for resource placement.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset