Restore from Restored: Single-image Inpainting

02/16/2021
by   Eun Hye Lee, et al.
0

Recent image inpainting methods show promising results due to the power of deep learning, which can explore external information available from a large training dataset. However, many state-of-the-art inpainting networks are still limited in exploiting internal information available in the given input image at test time. To mitigate this problem, we present a novel and efficient self-supervised fine-tuning algorithm that can adapt the parameters of fully pretrained inpainting networks without using ground-truth clean image in this work. We upgrade the parameters of the pretrained networks by utilizing existing self-similar patches within the given input image without changing network architectures. Qualitative and quantitative experimental results demonstrate the superiority of the proposed algorithm and we achieve state-of-the-art inpainting results on publicly available numerous benchmark datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro