Resultant-based Elimination in Ore Algebra
We consider resultant-based methods for elimination of indeterminates of Ore polynomial systems in Ore algebra. We start with defining the concept of resultant for bivariate Ore polynomials then compute it by the Dieudonne determinant of the polynomial coefficients. Additionally, we apply noncommutative versions of evaluation and interpolation techniques to the computation process to improve the efficiency of the method. The implementation of the algorithms will be performed in Maple to evaluate the performance of the approaches.
READ FULL TEXT