Rethinking Image Mixture for Unsupervised Visual Representation Learning

03/11/2020
by   Zhiqiang Shen, et al.
8

In supervised learning, smoothing label/prediction distribution in neural network training has been proven useful in preventing the model from being over-confident, and is crucial for learning more robust visual representations. This observation motivates us to explore the way to make predictions flattened in unsupervised learning. Considering that human annotated labels are not adopted in unsupervised learning, we introduce a straightforward approach to perturb input image space in order to soften the output prediction space indirectly. Despite its conceptual simplicity, we show empirically that with the simple solution – image mixture, we can learn more robust visual representations from the transformed input, and the benefits of representations learned from this space can be inherited by the linear classification and downstream tasks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset