Retrodictive Quantum Computing

05/12/2022
by   Jacques Carette, et al.
0

Quantum models of computation are widely believed to be more powerful than classical ones. Efforts center on proving that, for a given problem, quantum algorithms are more resource efficient than any classical one. All this, however, assumes a standard predictive paradigm of reasoning where, given initial conditions, the future holds the answer. How about bringing information from the future to the present and exploit it to one's advantage? This is a radical new approach for reasoning, so-called Retrodictive Computation, that benefits from the specific form of the computed functions. We demonstrate how to use tools of symbolic computation to realize retrodictive quantum computing at scale and exploit it to efficiently, and classically, solve instances of the quantum Deutsch-Jozsa, Bernstein-Vazirani, Simon, Grover, and Shor's algorithms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset