rna2rna: Predicting lncRNA-microRNA-mRNA Interactions from Sequence with Integration of Interactome and Biological Annotation Data

06/17/2019
by   Nhat Tran, et al.
0

Long non-coding RNA, microRNA, and messenger RNA enable key regulations of various biological processes through a variety of diverse interaction mechanisms. Identifying the interactions and cross-talk between these heterogeneous RNA classes is essential in order to uncover the functional role of individual RNA transcripts, especially for unannotated and newly-discovered RNA sequences with no known interactions. Recently, sequence-based deep learning and network embedding methods are becoming promising approaches that can either predict RNA-RNA interactions from a sequence or infer missing interactions from patterns that may exist in the network topology. However, the majority of these methods have several limitations, e.g., the inability to perform inductive predictions, to distinguish the directionality of interactions, or to integrate various sequence, interaction, and annotation biological datasets. We proposed a novel deep learning-based framework, rna2rna, which learns from RNA sequences to produce a low-dimensional embedding that preserves the proximities in both the interactions topology and the functional affinity topology. In this proposed embedding space, we have designated a two-part "source and target contexts" to capture the targeting and receptive fields of each RNA transcript, while encapsulating the heterogenous cross-talk interactions between lncRNAs and miRNAs. From experimental results, our method exhibits superior performance in AUPR rates compared to state-of-art approaches at predicting missing interactions in different RNA-RNA interaction databases and was shown to accurately perform link predictions to novel RNA sequences not seen at training time, even without any prior information. Additional results suggest that our proposed framework may have successfully captured a manifold for heterogeneous RNA sequences to be used to discover novel functional annotations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset