robo-gym – An Open Source Toolkit for Distributed Deep Reinforcement Learning on Real and Simulated Robots

by   Matteo Lucchi, et al.

Applying Deep Reinforcement Learning (DRL) to complex tasks in the field of robotics has proven to be very successful in the recent years. However, most of the publications focus either on applying it to a task in simulation or to a task in a real world setup. Although there are great examples of combining the two worlds with the help of transfer learning, it often requires a lot of additional work and fine-tuning to make the setup work effectively. In order to increase the use of DRL with real robots and reduce the gap between simulation and real world robotics, we propose an open source toolkit: robo-gym. We demonstrate a unified setup for simulation and real environments which enables a seamless transfer from training in simulation to application on the robot. We showcase the capabilities and the effectiveness of the framework with two real world applications featuring industrial robots: a mobile robot and a robot arm. The distributed capabilities of the framework enable several advantages like using distributed algorithms, separating the workload of simulation and training on different physical machines as well as enabling the future opportunity to train in simulation and real world at the same time. Finally we offer an overview and comparison of robo-gym with other frequently used state-of-the-art DRL frameworks.


page 1

page 2

page 3

page 4

page 5

page 6

page 7

page 8


MultiRoboLearn: An open-source Framework for Multi-robot Deep Reinforcement Learning

It is well known that it is difficult to have a reliable and robust fram...

Sim2Real for Peg-Hole Insertion with Eye-in-Hand Camera

Even though the peg-hole insertion is one of the well-studied problems i...

A User's Guide to Calibrating Robotics Simulators

Simulators are a critical component of modern robotics research. Strateg...

On Training Flexible Robots using Deep Reinforcement Learning

The use of robotics in controlled environments has flourished over the l...

Sim-to-Real Deep Reinforcement Learning with Manipulators for Pick-and-place

When transferring a Deep Reinforcement Learning model from simulation to...

Setting up a Reinforcement Learning Task with a Real-World Robot

Reinforcement learning is a promising approach to developing hard-to-eng...

Benchmarking Reinforcement Learning Algorithms on Real-World Robots

Through many recent successes in simulation, model-free reinforcement le...

Please sign up or login with your details

Forgot password? Click here to reset