Robust and Scalable Content-and-Structure Indexing (Extended Version)

09/12/2022
by   Kevin Wellenzohn, et al.
0

Frequent queries on semi-structured hierarchical data are Content-and-Structure (CAS) queries that filter data items based on their location in the hierarchical structure and their value for some attribute. We propose the Robust and Scalable Content-and-Structure (RSCAS) index to efficiently answer CAS queries on big semi-structured data. To get an index that is robust against queries with varying selectivities we introduce a novel dynamic interleaving that merges the path and value dimensions of composite keys in a balanced manner. We store interleaved keys in our trie-based RSCAS index, which efficiently supports a wide range of CAS queries, including queries with wildcards and descendant axes. We implement RSCAS as a log-structured merge (LSM) tree to scale it to data-intensive applications with a high insertion rate. We illustrate RSCAS's robustness and scalability by indexing data from the Software Heritage (SWH) archive, which is the world's largest, publicly-available source code archive.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro