Robust descent using smoothed multiplicative noise

10/15/2018
by   Matthew J. Holland, et al.
0

To improve the off-sample generalization of classical procedures minimizing the empirical risk under potentially heavy-tailed data, new robust learning algorithms have been proposed in recent years, with generalized median-of-means strategies being particularly salient. These procedures enjoy performance guarantees in the form of sharp risk bounds under weak moment assumptions on the underlying loss, but typically suffer from a large computational overhead and substantial bias when the data happens to be sub-Gaussian, limiting their utility. In this work, we propose a novel robust gradient descent procedure which makes use of a smoothed multiplicative noise applied directly to observations before constructing a sum of soft-truncated gradient coordinates. We show that the procedure has competitive theoretical guarantees, with the major advantage of a simple implementation that does not require an iterative sub-routine for robustification. Empirical tests reinforce the theory, showing more efficient generalization over a much wider class of data distributions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset