Rumour Detection via Zero-shot Cross-lingual Transfer Learning
Most rumour detection models for social media are designed for one specific language (mostly English). There are over 40 languages on Twitter and most languages lack annotated resources to build rumour detection models. In this paper we propose a zero-shot cross-lingual transfer learning framework that can adapt a rumour detection model trained for a source language to another target language. Our framework utilises pretrained multilingual language models (e.g.multilingual BERT) and a self-training loop to iteratively bootstrap the creation of ”silver labels” in the target language to adapt the model from the source language to the target language. We evaluate our methodology on English and Chinese rumour datasets and demonstrate that our model substantially outperforms competitive benchmarks in both source and target language rumour detection.
READ FULL TEXT