Sample Efficient Ensemble Learning with Catalyst.RL

03/29/2020
by   Sergey Kolesnikov, et al.
21

We present Catalyst.RL, an open-source PyTorch framework for reproducible and sample efficient reinforcement learning (RL) research. Main features of Catalyst.RL include large-scale asynchronous distributed training, efficient implementations of various RL algorithms and auxiliary tricks, such as n-step returns, value distributions, hyperbolic reinforcement learning, etc. To demonstrate the effectiveness of Catalyst.RL, we applied it to a physics-based reinforcement learning challenge "NeurIPS 2019: Learn to Move - Walk Around" with the objective to build a locomotion controller for a human musculoskeletal model. The environment is computationally expensive, has a high-dimensional continuous action space and is stochastic. Our team took the 2nd place, capitalizing on the ability of Catalyst.RL to train high-quality and sample-efficient RL agents in only a few hours of training time. The implementation along with experiments is open-sourced so results can be reproduced and novel ideas tried out.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro