Sampling with Attribute-Related Information for Controlling Language Models
The dominant approaches for controlling language models are based on fine-tuning large language models or prompt engineering. However, these methods often require condition-specific data or considerable hand-crafting. We propose a new simple guided decoding method, Gamma Sampling, which does not require complex engineering and any extra data. Gamma Sampling introduces attribute-related information (provided by humans or language models themselves) into the sampling process to guide language models to generate texts with desired attributes. Experiments on controlling topics and sentiments of generated text show Gamma Sampling to be superior in diversity, attribute relevance and overall quality of generated samples while maintaining a fast generation speed. In addition, we successfully applied Gamma Sampling to control other attributes of language such as relatedness and repetition, which further demonstrates the versatility and effectiveness of this method. Gamma Sampling is now available in the python package samplings via import gamma sampling from samplings.
READ FULL TEXT