Scalable computation of thermomechanical turbomachinery problems
A commonly held view is that finite element methods are not well-suited for very large-scale thermomechanical simulations. We seek to dispel this notion by presenting performance data for a collection of realistic, large-scale thermomechanical simulations. We describe the necessary technology to compute problems with O(10^7) to O(10^9) degrees-of-freedom, and emphasise what is required to achieve near linear computational complexity with good parallel scaling. Performance data is presented for turbomachinery components with up to 3.3 billion degrees-of-freedom. The software libraries used to perform the simulations are freely available under open source licenses. The performance demonstrated in this work opens up the possibility of system-level thermomechanical modelling, and lays the foundation for further research into high-performance formulations for even larger problems and for other physical processes, such as contact, that are important in turbomachinery analysis.
READ FULL TEXT