Scalable High-Rate Twin-Field Quantum Key Distribution Networks without Constraint of Probability and Intensity

12/21/2021
by   Yuan-Mei Xie, et al.
0

There have been several recent advancements in the field of long-distance point-to-point twin-field quantum key distribution (TFQKD) protocols, with an ultimate objective to build a large scalable quantum network for numerous users. Currently, fundamental limitations still exist for the implementation of a practical TFQKD network, including the strict constraint regarding intensity and probability for sending-or-not-sending type protocols and the low tolerance of large interference errors for phase-matching type protocols. Here, we propose a two-photon TFQKD protocol to overcome these issues simultaneously and introduce a cost-effective solution to construct a real TFQKD network, under which each node with fixed system parameters can dynamically switch different attenuation links while achieving good performance in long-distance transmission. For a four-user network, simulation results indicate that the key rates of our protocol for all six links can either exceed or approach the secret key capacity; however, four of them could not extract the key rate if using sending-or-not-sending type protocols. We anticipate that our proposed method can facilitate new practical and efficient TFQKD networks in the future.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset