Scalable Learning Paradigms for Data-Driven Wireless Communication

03/01/2020
by   Yue Xu, et al.
0

The marriage of wireless big data and machine learning techniques revolutionizes the wireless system by the data-driven philosophy. However, the ever exploding data volume and model complexity will limit centralized solutions to learn and respond within a reasonable time. Therefore, scalability becomes a critical issue to be solved. In this article, we aim to provide a systematic discussion on the building blocks of scalable data-driven wireless networks. On one hand, we discuss the forward-looking architecture and computing framework of scalable data-driven systems from a global perspective. On the other hand, we discuss the learning algorithms and model training strategies performed at each individual node from a local perspective. We also highlight several promising research directions in the context of scalable data-driven wireless communications to inspire future research.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro