Scalable Logo Recognition using Proxies

11/19/2018
by   Istvan Fehervari, et al.
16

Logo recognition is the task of identifying and classifying logos. Logo recognition is a challenging problem as there is no clear definition of a logo and there are huge variations of logos, brands and re-training to cover every variation is impractical. In this paper, we formulate logo recognition as a few-shot object detection problem. The two main components in our pipeline are universal logo detector and few-shot logo recognizer. The universal logo detector is a class-agnostic deep object detector network which tries to learn the characteristics of what makes a logo. It predicts bounding boxes on likely logo regions. These logo regions are then classified by logo recognizer using nearest neighbor search, trained by triplet loss using proxies. We also annotated a first of its kind product logo dataset containing 2000 logos from 295K images collected from Amazon called PL2K. Our pipeline achieves 97 with 0.6 mAP on PL2K test dataset and state-of-the-art 0.565 mAP on the publicly available FlickrLogos-32 test set without fine-tuning.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset