Scalable Multiple Network Inference with the Joint Graphical Horseshoe

06/23/2022
by   Camilla Lingjærde, et al.
0

Network models are useful tools for modelling complex associations. If a Gaussian graphical model is assumed, conditional independence is determined by the non-zero entries of the inverse covariance (precision) matrix of the data. The Bayesian graphical horseshoe estimator provides a robust and flexible framework for precision matrix inference, as it introduces local, edge-specific parameters which prevent over-shrinkage of non-zero off-diagonal elements. However, for many applications such as statistical omics, the current implementation based on Gibbs sampling becomes computationally inefficient or even unfeasible in high dimensions. Moreover, the graphical horseshoe has only been formulated for a single network, whereas interest has grown in the network analysis of multiple data sets that might share common structures. We propose (i) a scalable expectation conditional maximisation (ECM) algorithm for obtaining the posterior mode of the precision matrix in the graphical horseshoe, and (ii) a novel joint graphical horseshoe estimator, which borrows information across multiple related networks to improve estimation. We show, on both simulated and real omics data, that our single-network ECM approach is more scalable than the existing graphical horseshoe Gibbs implementation, while achieving the same level of accuracy. We also show that our joint-network proposal successfully leverages shared edge-specific information between networks while still retaining differences, outperforming state-of-the-art methods at any level of network similarity.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset