Scalable Nonlinear Learning with Adaptive Polynomial Expansions

10/02/2014
by   Alekh Agarwal, et al.
0

Can we effectively learn a nonlinear representation in time comparable to linear learning? We describe a new algorithm that explicitly and adaptively expands higher-order interaction features over base linear representations. The algorithm is designed for extreme computational efficiency, and an extensive experimental study shows that its computation/prediction tradeoff ability compares very favorably against strong baselines.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro