Scoring-Aggregating-Planning: Learning task-agnostic priors from interactions and sparse rewards for zero-shot generalization

10/17/2019
by   Huazhe Xu, et al.
8

Humans can learn task-agnostic priors from interactive experience and utilize the priors for novel tasks without any finetuning. In this paper, we propose Scoring-Aggregating-Planning (SAP), a framework that can learn task-agnostic semantics and dynamics priors from arbitrary quality interactions under sparse reward and then plan on unseen tasks in zero-shot condition. The framework finds a neural score function for local regional state and action pairs that can be aggregated to approximate the quality of a full trajectory; moreover, a dynamics model that is learned with self-supervision can be incorporated for planning. Many previous works that leverage interactive data for policy learning either need massive on-policy environmental interactions or assume access to expert data while we can achieve a similar goal with pure off-policy imperfect data. Instantiating our framework results in a generalizable policy to unseen tasks. Experiments demonstrate that the proposed method can outperform baseline methods on a wide range of applications including gridworld, robotics tasks, and video games.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro