Second-order Guarantees of Distributed Gradient Algorithms

09/23/2018
by   Amir Daneshmand, et al.
0

We consider distributed smooth nonconvex unconstrained optimization over networks, modeled as a connected graph. We examine the behavior of distributed gradient-based algorithms near strict saddle points. Specifically, we establish that (i) the renowned Distributed Gradient Descent (DGD) algorithm likely converges to a neighborhood of a Second-order Stationary (SoS) solution; and (ii) the more recent class of distributed algorithms based on gradient tracking--implementable also over digraphs--likely converges to exact SoS solutions, thus avoiding (strict) saddle-points. Furthermore, a convergence rate is provided for the latter class of algorithms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro