Secure IoT Routing: Selective Forwarding Attacks and Trust-based Defenses in RPL Network

01/18/2022
by   Jun Jiang, et al.
0

IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) is an essential routing protocol to enable communications for IoT networks with low power devices. RPL uses an objective function and routing constraints to find an optimized routing path for each node in the network. However, recent research has shown that topological attacks, such as selective forwarding attacks, pose great challenges to the secure routing of IoT networks. Many conventional secure routing solutions, on the other hand, are computationally heavy to be directly applied in resource-constrained IoT networks. There is an urgent need to develop lightweight secure routing solutions for IoT networks. In this paper, we first design and implement a series of advanced selective forwarding attacks from the attack perspective, which can flexibly select the type and percentage of forwarding packets in an energy efficient way, and even bad-mouth other innocent nodes in the network. Experiment results show that the proposed attacks can maximize the attack consequences (i.e. number of dropped packets) while maintaining undetected. Moreover, we propose a lightweight trust-based defense solution to detect and eliminate malicious selective forwarding nodes from the network. The results show that the proposed defense solution can achieve high detection accuracy with very limited extra energy usage (i.e. 3.4

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset