Secure Linear MDS Coded Matrix Inversion

07/13/2022
by   Neophytos Charalambides, et al.
0

A cumbersome operation in many scientific fields, is inverting large full-rank matrices. In this paper, we propose a coded computing approach for recovering matrix inverse approximations. We first present an approximate matrix inversion algorithm which does not require a matrix factorization, but uses a black-box least squares optimization solver as a subroutine, to give an estimate of the inverse of a real full-rank matrix. We then present a distributed framework for which our algorithm can be implemented, and show how we can leverage sparsest-balanced MDS generator matrices to devise matrix inversion coded computing schemes. We focus on balanced Reed-Solomon codes, which are optimal in terms of computational load; and communication from the workers to the master server. We also discuss how our algorithms can be used to compute the pseudoinverse of a full-rank matrix, and how the communication is secured from eavesdroppers.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro