SelectiveNet: A Deep Neural Network with an Integrated Reject Option

01/26/2019
by   Yonatan Geifman, et al.
0

We consider the problem of selective prediction (also known as reject option) in deep neural networks, and introduce SelectiveNet, a deep neural architecture with an integrated reject option. Existing rejection mechanisms are based mostly on a threshold over the prediction confidence of a pre-trained network. In contrast, SelectiveNet is trained to optimize both classification (or regression) and rejection simultaneously, end-to-end. The result is a deep neural network that is optimized over the covered domain. In our experiments, we show a consistently improved risk-coverage trade-off over several well-known classification and regression datasets, thus reaching new state-of-the-art results for deep selective classification.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro