Self-Augmentation: Generalizing Deep Networks to Unseen Classes for Few-Shot Learning

04/01/2020
by   Jin-Woo Seo, et al.
0

Few-shot learning aims to classify unseen classes with a few training examples. While recent works have shown that standard mini-batch training with a carefully designed training strategy can improve generalization ability for unseen classes, well-known problems in deep networks such as memorizing training statistics have been less explored for few-shot learning. To tackle this issue, we propose self-augmentation that consolidates regional dropout and self-distillation. Specifically, we exploit a data augmentation technique called regional dropout, in which a patch of an image is substituted into other values. Then, we employ a backbone network that has auxiliary branches with its own classifier to enforce knowledge sharing. Lastly, we present a fine-tuning method to further exploit a few training examples for unseen classes. Experimental results show that the proposed method outperforms the state-of-the-art methods for prevalent few-shot benchmarks and improves the generalization ability.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro