Semi-Supervised and Long-Tailed Object Detection with CascadeMatch

05/24/2023
by   Yuhang Zang, et al.
0

This paper focuses on long-tailed object detection in the semi-supervised learning setting, which poses realistic challenges, but has rarely been studied in the literature. We propose a novel pseudo-labeling-based detector called CascadeMatch. Our detector features a cascade network architecture, which has multi-stage detection heads with progressive confidence thresholds. To avoid manually tuning the thresholds, we design a new adaptive pseudo-label mining mechanism to automatically identify suitable values from data. To mitigate confirmation bias, where a model is negatively reinforced by incorrect pseudo-labels produced by itself, each detection head is trained by the ensemble pseudo-labels of all detection heads. Experiments on two long-tailed datasets, i.e., LVIS and COCO-LT, demonstrate that CascadeMatch surpasses existing state-of-the-art semi-supervised approaches – across a wide range of detection architectures – in handling long-tailed object detection. For instance, CascadeMatch outperforms Unbiased Teacher by 1.9 AP Fix on LVIS when using a ResNet50-based Cascade R-CNN structure, and by 1.7 AP Fix when using Sparse R-CNN with a Transformer encoder. We also show that CascadeMatch can even handle the challenging sparsely annotated object detection problem.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset