Semiparametric Shape-restricted Estimators for Nonparametric Regression

07/11/2023
by   Kenta Takatsu, et al.
0

Estimating the conditional mean function that relates predictive covariates to a response variable of interest is a fundamental task in statistics. In this paper, we propose some general nonparametric regression approaches that are widely applicable under very mild conditions. The method decomposes a function with a Lipschitz continuous k-th derivative into a sum of a (k-1)-monotone function and a parametric component. We implement well-established shape-restricted estimation procedures (such as isotonic regression) to handle the "nonparametric" components of the true regression function and combine them with a simple sample-splitting procedure to estimate the parametric components. The resulting estimators inherit several favorable properties from the shape-restricted regression estimators. Notably, it is (practically) tuning parameter-free, converges at the minimax rate, and exhibits a locally adaptive rate when the true regression function is "simple". Finally, a series of numerical studies are presented, confirming these theoretical properties.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro