Sequence Generation: From Both Sides to the Middle

06/23/2019
by   Long Zhou, et al.
0

The encoder-decoder framework has achieved promising process for many sequence generation tasks, such as neural machine translation and text summarization. Such a framework usually generates a sequence token by token from left to right, hence (1) this autoregressive decoding procedure is time-consuming when the output sentence becomes longer, and (2) it lacks the guidance of future context which is crucial to avoid under translation. To alleviate these issues, we propose a synchronous bidirectional sequence generation (SBSG) model which predicts its outputs from both sides to the middle simultaneously. In the SBSG model, we enable the left-to-right (L2R) and right-to-left (R2L) generation to help and interact with each other by leveraging interactive bidirectional attention network. Experiments on neural machine translation (En-De, Ch-En, and En-Ro) and text summarization tasks show that the proposed model significantly speeds up decoding while improving the generation quality compared to the autoregressive Transformer.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset