Short Text Classification via Term Graph
Short text classi cation is a method for classifying short sentence with prede ned labels. However, short text is limited in shortness in text length that leads to a challenging problem of sparse features. Most of existing methods treat each short sentences as independently and identically distributed (IID), local context only in the sentence itself is focused and the relational information between sentences are lost. To overcome these limitations, we propose a PathWalk model that combine the strength of graph networks and short sentences to solve the sparseness of short text. Experimental results on four different available datasets show that our PathWalk method achieves the state-of-the-art results, demonstrating the efficiency and robustness of graph networks for short text classification.
READ FULL TEXT