Similarity matrix average for aggregating multiplex networks
We introduce a methodology based on averaging similarity matrices with the aim of integrating the layers of a multiplex network into a single monoplex network. Multiplex networks are adopted for modelling a wide variety of real-world frameworks, such as multi-type relations in social, economic and biological structures. More specifically, multiplex networks are used when relations of different nature (layers) arise between a set of elements from a given population (nodes). A possible approach for investigating multiplex networks consists in aggregating the different layers in a single network (monoplex) which is a valid representation – in some sense – of all the layers. In order to obtain such an aggregated network, we propose a theoretical approach – along with its practical implementation – which stems on the concept of similarity matrix average. This methodology is finally applied to a multiplex similarity network of statistical journals, where the three considered layers express the similarity of the journals based on co-citations, common authors and common editors, respectively.
READ FULL TEXT