Simplification of Polyline Bundles

07/11/2019
by   Joachim Spoerhase, et al.
0

We propose and study generalizations to the well-known problem of polyline simplification. Instead of a single polyline, we are given a set of polylines possibly sharing some line segments and bend points. The simplification of those shared parts has to be consistent among the polylines. We consider two optimization goals: either minimizing the number of line segments or minimizing the number of bend points in the simplification. By reduction from Minimum-Independent-Dominating-Set, we show that both of these optimization problems are NP-hard to approximate within a factor n^1/3 - ε for any ε > 0 where n is the number of bend points in the polyline bundle. Moreover, we outline that both problems remain NP-hard even if the input is planar. On the positive side, we give a polynomial-size integer linear program and show fixed-parameter tractability in the number of shared bend points.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro