Simplified Hierarchical Recurrent Encoder-Decoder for Building End-To-End Dialogue Systems

09/08/2018
by   Chao Wang, et al.
0

As a generative model for building end-to-end dialogue systems, Hierarchical Recurrent Encoder-Decoder (HRED) consists of three layers of Gated Recurrent Unit (GRU), which from bottom to top are separately used as the word-level encoder, the sentence-level encoder, and the decoder. Despite performing well on dialogue corpora, HRED is computationally expensive to train due to its complexity. To improve the training efficiency of HRED, we propose a new model, which is named as Simplified HRED (SHRED), by making each layer of HRED except the top one simpler than its upper layer. On the one hand, we propose Scalar Gated Unit (SGU), which is a simplified variant of GRU, and use it as the sentence-level encoder. On the other hand, we use Fixed-size Ordinally-Forgetting Encoding (FOFE), which has no trainable parameter at all, as the word-level encoder. The experimental results show that compared with HRED under the same word embedding size and the same hidden state size for each layer, SHRED reduces the number of trainable parameters by 25%--35%, and the training time by more than 50%, but still achieves slightly better performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset