Simultaneous Sieve Inference for Time-Inhomogeneous Nonlinear Time Series Regression

12/16/2021
by   Xiucai Ding, et al.
0

In this paper, we consider the time-inhomogeneous nonlinear time series regression for a general class of locally stationary time series. On one hand, we propose sieve nonparametric estimators for the time-varying regression functions which can achieve the min-max optimal rate. On the other hand, we develop a unified simultaneous inferential theory which can be used to conduct both structural and exact form testings on the functions. Our proposed statistics are powerful even under locally weak alternatives. We also propose a multiplier bootstrapping procedure for practical implementation. Our methodology and theory do not require any structural assumptions on the regression functions and we also allow the functions to be supported in an unbounded domain. We also establish sieve approximation theory for 2-D functions in unbounded domain and a Gaussian approximation result for affine and quadratic forms for high dimensional locally stationary time series, which can be of independent interest. Numerical simulations and a real financial data analysis are provided to support our results.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset