Single-Loop Switching Subgradient Methods for Non-Smooth Weakly Convex Optimization with Non-Smooth Convex Constraints

01/30/2023
by   Yankun Huang, et al.
0

In this paper, we consider a general non-convex constrained optimization problem, where the objective function is weakly convex and the constraint function is convex while they can both be non-smooth. This class of problems arises from many applications in machine learning such as fairness-aware supervised learning. To solve this problem, we consider the classical switching subgradient method by Polyak (1965), which is an intuitive and easily implementable first-order method. Before this work, its iteration complexity was only known for convex optimization. We prove its oracle complexity for finding a nearly stationary point when the objective function is non-convex. The analysis is derived separately when the constraint function is deterministic and stochastic. Compared to existing methods, especially the double-loop methods, the switching gradient method can be applied to non-smooth problems and only has a single loop, which saves the effort on tuning the number of inner iterations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro