SMOTified-GAN for class imbalanced pattern classification problems

08/06/2021
by   Anuraganand Sharma, et al.
0

Class imbalance in a dataset is a major problem for classifiers that results in poor prediction with a high true positive rate (TPR) but a low true negative rate (TNR) for a majority positive training dataset. Generally, the pre-processing technique of oversampling of minority class(es) are used to overcome this deficiency. Our focus is on using the hybridization of Generative Adversarial Network (GAN) and Synthetic Minority Over-Sampling Technique (SMOTE) to address class imbalanced problems. We propose a novel two-phase oversampling approach that has the synergy of SMOTE and GAN. The initial data of minority class(es) generated by SMOTE is further enhanced by GAN that produces better quality samples. We named it SMOTified-GAN as GAN works on pre-sampled minority data produced by SMOTE rather than randomly generating the samples itself. The experimental results prove the sample quality of minority class(es) has been improved in a variety of tested benchmark datasets. Its performance is improved by up to 9% from the next best algorithm tested on F1-score measurements. Its time complexity is also reasonable which is around O(N^2d^2T) for a sequential algorithm.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset