SnakeVoxFormer: Transformer-based Single Image Voxel Reconstruction with Run Length Encoding

03/28/2023
by   Jae Joong Lee, et al.
0

Deep learning-based 3D object reconstruction has achieved unprecedented results. Among those, the transformer deep neural model showed outstanding performance in many applications of computer vision. We introduce SnakeVoxFormer, a novel, 3D object reconstruction in voxel space from a single image using the transformer. The input to SnakeVoxFormer is a 2D image, and the result is a 3D voxel model. The key novelty of our approach is in using the run-length encoding that traverses (like a snake) the voxel space and encodes wide spatial differences into a 1D structure that is suitable for transformer encoding. We then use dictionary encoding to convert the discovered RLE blocks into tokens that are used for the transformer. The 1D representation is a lossless 3D shape data compression method that converts to 1D data that use only about 1 strategies affect the effect of encoding and reconstruction. We compare our method with the state-of-the-art for 3D voxel reconstruction from images and our method improves the state-of-the-art methods by at least 2.8 19.8

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro